Evidence that agonist-induced activation of calpain causes the shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets.
نویسندگان
چکیده
One of the responses of platelets to stimulation is activation of intracellular calpain (the Ca(2+)-dependent protease). Previously, we have shown that activation of calpain in platelets is involved in the generation of platelet procoagulant activity. Because procoagulant activity is present on the microvesicles that are shed from activated platelets, in this study we examined whether calpain is involved in the shedding of microvesicles. Platelets were incubated with the physiological agonists collagen or thrombin. The extent of activation of calpain correlated positively with the amount of procoagulant-containing microvesicles that formed, and the shedding of procoagulant-containing microvesicles was inhibited by calpeptin, MDL, and EST (E-64-d), three membrane-penetrating inhibitors of calpain. The protein composition of the microvesicles shed from aggregating platelets was similar to that of microvesicles shed by platelets in which the association of the membrane skeleton with the plasma membrane had been disrupted by incubation of platelets with dibucaine or ionophore A23187. Furthermore, like microvesicles shed from dibucaine- or ionophore A23187-treated platelets, those shed from the aggregating platelets possessed procoagulant activity. These results are consistent with the possibility that activation of calpain in aggregating platelets causes the shedding of procoagulant-containing microvesicles. We suggest that the shedding of microvesicles results from the calpain-induced hydrolysis of the platelet membrane skeleton.
منابع مشابه
Intact platelet membranes, not platelet-released microvesicles, support the procoagulant activity of adherent platelets.
The possibility that platelets release microvesicles on adherence to either von Willebrand factor (vWf) or collagen was examined by flow cytometry analysis of the supernatant above layers of adherent platelets. No microvesicle release was detected as a result of adherence to vWf or to collagen, a known platelet agonist. Approximately 8% of the total platelet mass was released as microvesicles a...
متن کاملProcoagulant Activity of Adherent Platelets
The possibility that platelets release microvesicles on adherence to either von Willebrand factor (vWf) or collagen was examined by flow cytometry analysis of the supernatant above layers of adherent platelets. No microvesicle release was detected as a result of adherence to vWf or to collagen, a known platelet agonist. Approximately 8% of the total platelet mass was released as microvesicles a...
متن کاملRole of the membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane
The platelet plasma membrane is lined by a membrane skeleton that appears to contain short actin filaments cross-linked by actin-binding protein. Actin-binding protein is in turn associated with specific plasma membrane glycoproteins. The aim of this study was to determine whether the membrane skeleton regulates properties of the plasma membrane. Platelets were incubated with agents that disrup...
متن کاملThe role of calpain in stimulus-response coupling: evidence that calpain mediates agonist-induced expression of procoagulant activity in platelets.
Although calpain (the Ca2(+)-dependent protease) is widely distributed, its function is poorly understood. One cell in which it becomes activated as a consequence of activation of the cell is the blood platelet. The aim of the present study was to determine whether activation of calpain was responsible for any of the responses of platelets to stimulation. Platelets were incubated with calpeptin...
متن کاملProcoagulant expression in platelets and defects leading to clinical disorders.
Hemostasis is a result of interactions between fibrillar structures in the damaged vessel wall, soluble components in plasma, and cellular elements in blood represented mainly by platelets and platelet-derived material. During formation of a platelet plug at the damaged vessel wall, factors IXa and VIIIa form the "tenase" complex, leading to activation of factor X on the surface of activated pl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 266 20 شماره
صفحات -
تاریخ انتشار 1991